Video Player Extreme

Version 1.0

https://marketplace.yoyogames.com/assets/9062/video-player-extreme-for-gms-2

Introduction

‘Video Player Extreme’ for GMS 2.x is a high performance multi-threaded video decoder and renderer,
which can play multiple videos simultaneously. It supports all codecs that Windows Media Player supports,
including MPEG, AVI, MP4, etc... Without the need for prior conversion. Just point to the file and go.

It is highly recommended that you familiarize yourself with the demo included in the asset. ‘obj_video’

contains examples of every function and common, but certainly not limited to all, use cases. The limit is
your imagination.

Basic Usage

Initialization

The basic initialization is a requirement for any application using Video Player Pro. This only needs to ever
be done once but must be done before any video is loaded, preferably in the create event.

video_init(window_device());

Termination (Optional)

To fully terminate the extension which will release all resources you can call video_release. This is optional
as the extension will call automatically when the program has ended.

video_release();

Loading a video

To play a video we must first load it. We can load a video from the projects included files or directly from
any location on the computer. We are not restricted to the GameMaker ‘sandbox’.

video_load("filename");
Formatting an absolute path “c:\\videos\\movie.mp4” or “c:/videos/movie.mp4” will work also.
On success, this function will return the unique instance ID for the loaded video. This instance ID can then

be used for all other video related functions. It is the instance ID that distinguishes each video during
simultaneous file playback.



Drawing the video

To draw the video simply call video_render from the draw event.

video_render(instance_id);

Function list
(Alphabetical order)

Function \ Arguments Return value Notes
video_dlIl_version N/A Numeric Version information
video_render Instance ID 1 Success Renders current frame
-1 Failure
video_get_current_time Instance ID Numeric Current playback time
video_get_duration Instance ID Numeric Duration of video
video_get_height Instance ID Numeric Video height
video_get_loop Instance ID 0 Non looping | Check if video is set to automatically
1 Looping loop
video_get_playback_ended | Instance ID 0 Ended Check to see if video has reached end
1 Playing of timeline.
video_get_rate Instance ID Numeric Video playback rate
video_get_volume Instance ID Numeric Returns video volume between 0.0 to
1.0
video_get_muted Instance ID 0 Non muted Returns if video sound is muted
1 Muted
video_get_width Instance ID Numeric Video width
video_init window_device() | 1 Success Initializes extension
*Required -1 Failure
video_release N/A N/A Releases extension from memory
video_load String 1 Success Filename of video
-1 Failure
video_pause Instance ID 1 Success Pauses playback
-1 Failure
video_play Instance ID 1 Success Resumes playback
-1 Failure
video_set_current_time Instance ID, time 1 Success Sets playback location in video
-1 Failure
video_set_loop Instance ID, 1 Success Enables or disables looping
looped (1 or 0) -1 Failure
video_set_rate Instance ID, rate 1 Success Sets playback rate
-1 Failure
video_set_volume Instance ID, rate 1 Success Set volume
-1 Failure
video_set_muted Instance ID, 1 Success Enables or disables video audio
muted (1 or 0) -1 Failure




A note on return codes

In general and unless otherwise noted, a successful call will return 1 and a failure will return -1.

The reasoning behind breaking industry standards here is because if GameMaker can’t find the extension
for whatever reason (for example the DLL missing), it will return 0. Which can cause unnecessarily lengthy

debugging issues.

With this extension, when a function ever returns zero, when the expected return code is one or minus
one, you can bet the extension hasn’t been included correctly.



